partial double bond of 1.671 (8) \AA observed in the free ligand (Form, Raper \& Downie, 1976), but is much shorter than the $1.79 \AA$ quoted in cis-bis $[2(3 H)$ benzimidazolethione Itetrachlorotellurium(IV)-dioxane (Deuten, Schnabel \& Klar, 1979). This S-C bond length also agrees with those obtained for similar compounds referred to in Introduction. The C(2)-N(3) and $\mathrm{C}(2)-\mathrm{N}(4)$ bond lengths $[1.337(6)$ and $1 \cdot 346$ (6) \AA] do not show significant variation in keeping with the thione structure and agree with the value $[1.362(6) \AA]$ quoted in the free ptu crystal structure and with the 1.353 (14) and 1.317 (13) \AA in the $2(3 \mathrm{H})$-benzimidazolethione- $\mathrm{Te}^{\mathrm{IV}}$ complex (Deuten, Schnabel \& Klar, 1979). Hence the bond parameters obtained for our compound clearly indicate the presence of thione form (III). $\mathrm{C}-\mathrm{C}$ bond lengths are in the range 1.370 (8) to 1.400 (9) \AA and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are in the range $116.7(4)$ to $122.9(5)^{\circ}$. The average $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ bond lengths in the ptu ligand are 0.84 (5) and 0.88 (6) \AA respectively. The ptu group is planar within a maximum deviation of 0.041 (4) \AA from the least-squares plane.

The thiourea SCN_{2} moiety is planar with the maximum deviation from the least-squares plane through the atoms being 0.028 (5) \AA. The $S-C$ bond length $[1.734(6) \AA$] and $\mathrm{C}-\mathrm{N}$ partial double bonds [1.329 (8) and 1.311 (8) \AA] are normal for thiourea ligands. The average $\mathrm{N}-\mathrm{H}$ bond is 0.87 (2) \AA.

The Cl^{-}ions remain outside the coordination sphere of the Te atom, $\mathrm{Te}-\mathrm{Cl}$ being 5.618 (2) \AA. However, the Cl^{-}ion remains approximately in the least-squares plane of the SCN_{2} thiourea and ptu groups, the deviation of the ion from these two planes being 0.014 (1) and 0.855 (1) \AA respectively. Two N atoms of the thiourea group are involved in hydrogen bonding with the Cl^{-}ion, as revealed by the distances 3.292 (6) and 3.453 (6) \AA. Furthermore, the same Cl^{-}ion
participates in hydrogen bonding with the NH group of the ptu ligand also, with distances of 3.225 (4) and 3.214 (4) \AA. There is a short intermolecular S \cdots S van der Waals interaction $[\mathrm{S}(2) \cdots \mathrm{S}(2)(1-x,-y,-z)$ $=3 \cdot 207(2) \AA]$.

References

Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1-53. Anderson, O. P. (1971). Acta Chem. Scand. 25, 3593-3608.
Ase, K. (1969). Acta Chem. Scand. 23, 3206-3216.
Ase, K., Moe, K. M. \& Solheim, J. O. (1971). Acta Chem. Scand. 25, 2467-2475.
Ase, K. \& Roti, I. (1974). Acta Chem. Scand. Ser. A, 28, 104-112.
Ault, H. K. \& Husebye, S. (1978). Acta Chem. Scand. Ser. A, 32, 157-162.
Barnard, P. W. C., Donaldson, J. W., Grimsey, R. M. A., Dennes, G., Russo, U. \& Calogero, S. (1981). Inorg. Chim. Acta, 51, 217-223.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Deuten, K. V., Schnabel, W. \& Klar, G. (1979). Cryst. Struct. Commun. 8, 679-684.
Elder, R. C., Marcuso, T. \& Boolchand, P. (1977). Inorg. Chem. 16, 2700-2704.
Form, G. R., Raper, E. S. \& Downie, T. C. (1976). Acta Cryst. B32, 345-348.
Fosheim, K., Foss, O., Scheie, A. \& Solheimsnes, S. (1965). Acta Chem. Scand. 19, 2336-2348.
Foss, O. (1970). Pure Appl. Chem. 24, 31-48.
Foss, O., Lyssandtrae, N., Moe, K. M. \& Tysseland, M. (1973). Acta Chem. Scand. 27, 218-228.

Foss, O., Maroy, K. \& Husebye, S. (1965). Acta Chem. Scand. 19, 2361-2368.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Takahashi, Y. \& Yabe, K. (1969). Bull. Chem. Soc. Jpn, 42, 3064-3072.

Acta Cryst. (1984). C40, 965-967

Structure of Chloro(diethyldithiocarbamato)(triphenylphosphine)nickel(II), $\left[\mathrm{NiCl}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NS}_{2}\right)\left\{\mathbf{P P}_{6} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\right]$

By K. Ramalingam and G. Aravamudan
Department of Chemistry, Indian Institute of Technology, Madras-600 036, India
and M. Seshasayee and Ch. Subramanyam
Department of Physics, Indian Institute of Technology, Madras-600 036, India

(Received 4 November 1983; accepted 13 February 1984)

Abstract. $M_{r}=504.69$, triclinic, $P \overline{1}, \quad a=9.808(2)$,
$b=11.690(2), \quad c=14.026(2) \AA, \quad \alpha=97.63(1), \quad \beta$
$=118.35(1), \quad \gamma=108.81(1)^{\circ}, \quad V=1258.4 \AA^{3}, \quad Z=$
$2, \quad D_{x}=1.33 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$
$0108-2701 / 84 / 060965-03 \$ 01.50$
$1.049 \mathrm{~mm}^{-1}, \quad T=300 \mathrm{~K}, \quad F(000)=524$, final $R=$ 0.052 for 1773 reflections. Ni^{11} displays planar fourfold coordination with the following parameters: $\mathrm{Ni}-\mathrm{S}($ trans to Cl$)=2 \cdot 170(4), \mathrm{Ni}-\mathrm{S}($ trans to P$)$ © 1984 International Union of Crystallography
$=2.232$ (3), $\mathrm{Ni}-\mathrm{Cl}=2.187$ (3), $\mathrm{Ni}-\mathrm{P}=2.204$ (3) \AA, $\mathrm{S}(1)-\mathrm{Ni}-\mathrm{S}(2)=78.4(1), \quad \mathrm{S}(2)-\mathrm{Ni}-\mathrm{Cl}=93.2(1)$, $\mathrm{Cl}-\mathrm{Ni}-\mathrm{P}=93.7(1), \mathrm{P}-\mathrm{Ni}-\mathrm{S}(1)=94.7(1)^{\circ}$. There are no significant intermolecular interactions.

Introduction. The structure and reactivity of metal dithiolates, especially of dithiocarbamates, have evoked

interest in recent years (Burns, McCullough \& McAuliffe, 1980; Coucouvanis, 1970, 1979). The d^{8} divalent transition-metal ions form stable dithiocarbamates of the type $M L_{2}(M=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt})$ which are generally resistant to attack by hard Lewis bases. However, by suitably choosing R_{1} and R_{2} (e.g. $R_{1}=R_{2}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}$), it has recently been shown that $\mathrm{Ni} L_{2}$ complexes can be readily broken up with ethylenediamine (Aravamudan, Ramalingam, Radha \& Seshasayee, 1984). The $M L_{2}$ dithiocarbamates are also opened up by π-acceptor ligands such as substituted phosphines (Maxfield, 1970). These phosphine dithiocarbamate complexes of $\mathrm{Ni}^{\mathrm{II}}, \mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ have shown interesting NMR, electronic spectral and electrochemical characteristics (Fackler, Lin \& Andrews, 1977; Bowmaker, Boyd, Campbell, Hope \& Martin, 1982). In addition, the $\mathrm{Ni}^{\mathrm{II}}$ complexes also give rise to Ni^{1} and $\mathrm{Ni}^{I I I}$ species on γ irradiation, which have interesting ESR features (Muralikrishna \& Subramanian, 1984; Bowmaker, Boyd \& Campbell, 1982). Structural work on these Ni complexes is, however, sparse. Here we report the crystal structure of the title compound. The structure of its triethylphosphine analogue was reported (Chan, Chen, Fackler, Masters \& Pan, 1982) when this work was in progress.

Experimental. Preparation according to Maxfield (1970); purple crystals isolated were sensitive to hydrolysis leading to the formation of bis(diethyldithiocarbamato)nickel(II), nickel chloride and triphenylphosphine; single crystals, however, obtained by dissolving the compound in ethyl acetate-dichloromethane and evaporating the solution under anhydrous conditions. D_{m} not determined. Crystal $0.4 \times 0.08 \times$ 0.3 mm . CAD-4 diffractometer, graphite filter, Mo $K \alpha$ radiation. Lattice constants: 24 high-angle reflections. $\omega-2 \theta$ scan technique, $1<\theta<27^{\circ}$ ($h: 0$ to $10, k: 12$ to $-12, l: 15$ to -15). 4776 reflections recorded. 1773 unique with $I>3 \sigma(I)$ used in structure refinement. No absorption correction. Two standards: intensity variation $<5 \%$. Space group $P \overline{1}$ assumed, and later proved to be correct. Coordinates of Ni, P and Cl atoms from Patterson map and other non-hydrogen atom positions revealed by successive difference Fourier maps. 17 of the 25 H atoms appeared in
difference Fourier maps; positions of the eight H atoms attached to $C(3), C(4)$ and $C(5)$ atoms were deduced using geometrical constraints ($A F I X$ routine of the program SHELX76, Sheldrick, 1976). Full-matrix least-squares refinements on F with anisotropic thermal parameters for non-hydrogen atoms and isotropic for H converged to $R=0.052, R_{w}=0.055$ with $w=1.000 /$ $\left[\sigma^{2}\left(F_{o}\right)+0.161\left|F_{o}\right|^{2}\right] .(\Delta / \sigma)_{\max }=0.967$. Final $\Delta \rho$ map featureless, max. peak being 0.41 e \AA^{-3}. No correction for secondary extinction.

Discussion. Positional and thermal parameters are listed in Table 1.* Bond parameters are given in Table 2. Fig. 1 gives the ORTEP plot (Johnson, 1976) of the molecule. The title compound, $\left[\mathrm{NiCl}(\mathrm{dtc})\left(\mathrm{PPh}_{3}\right)\right]$ (I), is monomeric with no significant $(<3.5 \AA)$ intermolecular contacts. $\mathrm{Ni}, \mathrm{S}(1), \mathrm{S}(2), \mathrm{P}$ and Cl atoms are planar to within $0.003 \AA$. The planarity of the coordination around $\mathrm{Ni}^{\mathrm{II}}$ is also manifested in the observed diamagnetism of the compound. The deviation of this plane from a perfect square is caused by the small bite angle subtended by the S atoms of the chelating dtc at the Ni position. $\mathrm{NiCl}\left(\mathrm{dtc}_{\mathrm{C}}\right)\left(\mathrm{PEt}_{3}\right)$ (II) displays a similar geometry around Ni (Chan, Chen, Fackler, Masters \& Pan, 1982).

The $\mathrm{Ni}-\mathrm{S}$ distances in (I) and in (II) are quite different, in contrast to $\mathrm{Ni}(\mathrm{dtc})_{2}$ (III) [2.195 (2) and 2.207 (2) \AA] (Bonamico, Dessy, Mariani, Vaciago \& Zambonelli, 1965). This is ascribed to the different trans influences of phosphine and Cl^{-}. Triphenylphosphine being a good π acceptor has a greater trans influence and hence the $\mathrm{Ni}-\mathrm{S}$ bond trans to P is longer than that trans to $\mathrm{Cl}[\mathrm{Ni}-\mathrm{S}$ trans to $\mathrm{P}=2.232$ (3) \AA, $\mathrm{Ni}-\mathrm{S}$ trans to $\mathrm{Cl}=2 \cdot 170(4) \AA$]. Asymmetry in the $\mathrm{Ni}-\mathrm{S}$ bonds in (I) leads to an increase in $\mathrm{Ni}-\mathrm{S}-\mathrm{C}$ angle [87.4 (4) ${ }^{\circ}$ in (I); 85.3(4) ${ }^{\circ}$ in (III)] and a contraction in $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angle $\left[108.7(7)^{\circ}\right.$ in (I); $110.5(4)^{\circ}$ in (III)].

The bond parameters of the dtc moiety are found to be normal. Chan et al. (1982) reported that the C-N bond order in (II) is slightly different from that of (III) based on spectroscopic data, though they state that there is no X-ray evidence for this. However, we find that the $v(\mathrm{C}-\mathrm{N})$ frequency for (I) and (III) appears at the same value, viz $1525 \mathrm{~cm}^{-1}$, implying no change in bond order. X-ray evidence for the change in $\mathrm{C}-\mathrm{N}$ bond length of (I) with respect to (III) is also not apparent.

Compounds (I) and (II) are rare examples of square-planar $\mathrm{Ni}^{\mathrm{II}}$ complexes featuring Cl^{-}as a ligand. This is forced through the square-planar geometry

[^0]Table 1. Positional $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters ($\times 10^{3}$) for non -H atoms with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} U_{i i}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Ni	4653 (2)	1119 (1)	2818 (1)	43 (1)
Cl	7148 (3)	1637 (2)	3017 (2)	55 (1)
S(1)	2247 (4)	392 (3)	2731 (3)	77 (1)
S(2)	4716 (3)	-541 (2)	3431 (2)	59 (1)
P	4235 (3)	2641 (2)	2114 (2)	39 (1)
N	1801 (11)	-1657 (8)	3422 (8)	85 (2)
C(1)	2782 (12)	-753 (9)	3242 (8)	63 (2)
C(2)	-36 (15)	-1782 (12)	3044 (12)	109 (2)
C(3)	220 (18)	-815 (15)	4070 (14)	155 (2)
C(4)	2379 (15)	-2589 (11)	3885 (11)	108 (2)
C(5)	1513 (22)	-3838(13)	2905 (17)	172 (2)
C(6)	2063 (10)	2548 (8)	1553 (8)	45 (2)
C(7)	1680 (11)	2810 (9)	2377 (8)	56 (2)
C(8)	19 (12)	2652 (10)	2010 (10)	71 (2)
C(9)	-1155 (12)	2315 (11)	887 (11)	74 (2)
C(10)	-802 (13)	2064 (13)	87 (10)	84 (2)
C(11)	839 (13)	2178 (11)	411 (9)	67 (2)
C(12)	4443 (11)	2552 (9)	886 (8)	53 (2)
C(13)	5279 (13)	3620 (10)	714 (9)	85 (2)
C(14)	5406 (16)	3481 (13)	-235 (11)	127 (2)
C(15)	4672 (16)	2273 (14)	-1018 (10)	123 (2)
C(16)	3824 (15)	1254 (12)	-870 (9)	91 (2)
C(17)	3729 (13)	1350 (10)	90 (9)	70 (2)
C(18)	5689 (10)	4305 (8)	3126 (7)	41 (1)
C(19)	5171 (12)	5269 (9)	3002 (9)	61 (2)
C(20)	6290 (14)	6511 (9)	3823 (10)	76 (2)
$\mathrm{C}(21)$	7893 (13)	6789 (9)	4732 (9)	62 (2)
C(22)	8380 (13)	5811 (10)	4837 (9)	63 (2)
C(23)	7290 (12)	4574 (9)	4043 (8)	39 (1)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Ni}-\mathrm{Cl}$	$2 \cdot 187$ (3)	$\mathrm{Ni}-\mathrm{S}(1)$	$2 \cdot 170$ (4)
$\mathrm{Ni}-\mathrm{P}$	$2 \cdot 204$ (3)	$\mathrm{Ni}-\mathrm{S}(2)$	2.232 (3)
C(1)-S(1)	1.712 (12)	$\mathrm{C}(1)-\mathrm{S}(2)$	1.713 (13)
$\mathrm{C}(1)-\mathrm{N}$	1.323 (16)	$\mathrm{N}-\mathrm{C}(2)$	1.565 (19)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.566 (26)	$\mathrm{N}-\mathrm{C}(4)$	1.473 (17)
C(4)-C(5)	1.517 (20)	$\mathrm{P}-\mathrm{C}(6)$	1.845 (11)
C(6)-C(7)	1.401 (18)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.393 (16)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.335 (16)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.346 (24)
C(10)-C(11)	1.401 (19)	$\mathrm{P}-\mathrm{C}(12)$	1.823 (13)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.377 (16)	C(13)-C(14)	1.388 (23)
C(14)-C(15)	1.379 (19)	C(15)-C(16)	1.320 (21)
C(16)-C(17)	1.386 (21)	$\mathrm{P}-\mathrm{C}(18)$	1.841 (7)
C(18)-C(19)	1.377 (16)	C(19)-C(20)	1.403 (12)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.364 (14)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.373 (18)
$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 385$ (12)		
$\mathrm{Cl}-\mathrm{Ni}-\mathrm{S}(2)$	93.2 (1)	$\mathrm{Cl}-\mathrm{Ni}-\mathrm{P}$	93.7 (1)
$\mathrm{S}(1)-\mathrm{Ni}-\mathrm{S}(2)$	78.4 (1)	$\mathrm{S}(1)-\mathrm{Ni}-\mathrm{P}$	94.7 (1)
$\mathrm{Cl}-\mathrm{Ni}-\mathrm{S}(1)$	171.6 (1)	$\mathrm{S}(2)-\mathrm{Ni}-\mathrm{P}$	172.7 (1)
$\mathrm{Ni}-\mathrm{S}(1)-\mathrm{C}(1)$	87.4 (4)	$\mathrm{Ni}-\mathrm{S}(2)-\mathrm{C}(1)$	85.4 (4)
S(1)-C(1)-S(2)	108.7 (7)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}$	124 (1)
$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}$	127 (1)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	119 (1)
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(3)$	106 (1)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(4)$	120 (1)
$\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(5)$	109 (1)	$\mathrm{P}-\mathrm{C}(6)-\mathrm{C}(7)$	116.0 (6)
$\mathrm{P}-\mathrm{C}(6)-\mathrm{C}(11)$	124 (1)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.2 (9)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120 (1)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	122 (1)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121 (1)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$	118 (1)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)$	120 (1)	$\mathrm{P}-\mathrm{C}(12)-\mathrm{C}(13)$	$123 \cdot 3$ (8)
$\mathrm{P}-\mathrm{C}(12)-\mathrm{C}(17)$	118.2 (9)	C(12)-C(13)-C(14)	120 (1)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120 (1)	C(14)-C(15)-C(16)	120 (1)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	122 (1)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	120 (1)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	119 (1)	$\mathrm{P}-\mathrm{C}(18)-\mathrm{C}(19)$	121.3 (6)
$\mathrm{P}-\mathrm{C}(18)-\mathrm{C}(23)$	119.1 (8)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	119.4 (9)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	121 (1)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	118.2 (8)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	121.5 (9)	C(22)-C(23)-C(18)	120 (1)
$\mathrm{C}(23)-\mathrm{C}(18)-\mathrm{C}(19)$	119.6 (7)		

Fig. 1. ORTEP plot of the molecule.
imposed on $\mathrm{Ni}^{1 I}$ by the other two ligands, viz dtc and PPh_{3}, which would induce large crystal-field effects.

The $\mathrm{Ni}-\mathrm{P}$ distances observed in (I) and (II) [2.204 (3) \AA in (I); $2 \cdot 188$ (2) \AA in (II)] are two of the shortest distances reported for divalent Ni-phosphine complexes. Comparison of the non-bonded distances and angles in (I) and (II) shows the effect of introducing bulky triphenylphosphine in the place of triethylphosphine. There is a considerable decrease in $\mathrm{S}(1) \cdots \mathrm{Ni} \cdots \mathrm{P}, \mathrm{S}(2) \cdots \mathrm{Ni} \cdots \mathrm{Cl}$ angles and increase in $\mathrm{P} \cdots \mathrm{Ni} \cdots \mathrm{Cl}$ in (I) with respect to (II). The three phenyl rings in PPh_{3} are 'pitched' to varying extents with respect to their corresponding Ni, P, C planes [dihedral angles $\left.\mathrm{Ni}-\mathrm{P}-\mathrm{C}-\mathrm{C}=69.0(6), 42.0(6), 27.3(5)^{\circ}\right]$; 'pitching' apparently relieves steric strain as has been explained in the species $\left[\mathrm{Ni}\left(\mathrm{I}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{-}$by Taylor, Templeton, Zalkin \& Horrocks (1968).

References

aravamudan, G., Ramalingam, K., Radha, K. \& Seshasayee, M. (1984). To be published.

Bonamico, M., Dessy, G., Mariani, C., Vaciago, A. \& Zambonelle, C. (1965). Acta Cryst. 19, 619-626.
Bowmaker, G. A., Boyd, P. D. W. \& Campbell, G. K. (1982). Inorg. Chem. 21, 2403-2412.
Bowmaker, G. A., Boyd, P. D. W., Campbell, G. K., Hope, J. M. \& Martin, R. L. (1982). Inorg. Chem. 21, 1152-1159.
Burns, R. P., McCullough, F. P. \& McAuliffe, C. A. (1980). Adv. Inorg. Chem. Radiochem. 23, 211-280.
Chan, L. T., Chen, H. W., Fackler, J. P. Jr, Masters, A. F. \& Pan, W. H. (1982). Inorg. Chem. 21, 4291-4295.
Coucouvanis, D. (1970). Prog. Inorg. Chem. 11, 233-371.
Coucouvanis, D. (1979). Prog. Inorg. Chem. 26, 301-469.
Fackler, J. P. Jr, Lin, I. J. B. \& Andrews, J. (1977). Inorg. Chem. 16, 450-457.
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Maxfield, P. L. (1970). Inorg. Nucl. Chem. Lett. 6, 693-696.
Muralikrishna, C. \& Subramanian, S. (1984). To be published.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Taylor, R. P., Templeton, D. H., Zalkin, A. \& Horrocks, D. H. (1968). Inorg. Chem. 7, 2629-2636.

[^0]: * Lists of structure factors, anisotropic thermal parameters, and H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39272 (20 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

